Posterior contraction in group sparse logit models for categorical responses

نویسندگان

چکیده

This paper studies posterior contraction rates in multi-category logit models with priors incorporating group sparse structures. We consider a general class of that includes the well-known multinomial as special case. Group sparsity is useful when predictor variables are naturally clustered and particularly for variable selection models. provide unified platform group-sparse include binary logistic regression under individual sparsity. No size restriction directly imposed on true signal this study. In addition to establishing first-ever properties sparsity, work also refines recent findings Bayesian theory regression. • Posterior multi-categorical direct coefficients.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posterior Contraction in Sparse Bayesian Factor Models for Massive Covariance

Sparse Bayesian factor models are routinely implemented for parsimonious dependence modeling and dimensionality reduction in highdimensional applications. We provide theoretical understanding of such Bayesian procedures in terms of posterior convergence rates in inferring high-dimensional covariance matrices where the dimension can be potentially larger than the sample size. Under relevant spar...

متن کامل

Rate-optimal Posterior Contraction for Sparse Pca

Principal component analysis (PCA) is possibly one of the most widely used statistical tools to recover a low rank structure of the data. In the high-dimensional settings, the leading eigenvector of the sample covariance can be nearly orthogonal to the true eigenvector. A sparse structure is then commonly assumed along with a low rank structure. Recently, minimax estimation rates of sparse PCA ...

متن کامل

Rate-optimal Posterior Contraction for Sparse Pca By

Principal component analysis (PCA) is possibly one of the most widely used statistical tools to recover a low-rank structure of the data. In the highdimensional settings, the leading eigenvector of the sample covariance can be nearly orthogonal to the true eigenvector. A sparse structure is then commonly assumed along with a low rank structure. Recently, minimax estimation rates of sparse PCA w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2022

ISSN: ['1873-1171', '0378-3758']

DOI: https://doi.org/10.1016/j.jspi.2022.01.001